1 附件

2 基于基因修饰细胞系的生物检定法指导原则(草案)

- 3 基于基因修饰细胞系的生物检定法系采用细胞与分子生
- 4 物学技术,以药物的作用机制为基础,构建特定基因修饰细
- 5 胞系,通过检测供试品作用于该细胞的反应信号或指示系统,
- 6 用于相关产品生物检定的检测方法。本指导原则是对基于基
- 7 因修饰细胞系的生物检定法的基本技术原则,用于指导具体
- 8 方法的开发、验证以及数据分析等。

9 一、 基因修饰细胞系的建立

- 10 基因修饰细胞系的建立包括细胞的构建、筛选及建库,
- 11 建立的细胞库应确保其遗传和功能稳定性。
- 12 (一)细胞的构建
- 13 1.构建策略
- 14 应基于待测物的主要效应机制及临床相关性,确定其作
- 15 用位点(如受体或配体)、胞内信号通路及效应分子,选择响
- 16 应值高、易检测的信号分子或效应分子作为检测指示物,具
- 17 体可选择采用以下策略。
- 18 (1)增强细胞反应性
- 19 当初始细胞存在适宜的检测指示物,但细胞对待测物反
- 20 应不敏感(作用位点缺失或表达不足),可通过直接导入作用
- 21 位点等方式增强其反应性,如,将脑利钠肽受体导入 HEK293
- 22 细胞,通过检测环鸟苷酸(cGMP)的含量,测定脑利钠肽生

- 23 物学活性。
- 24 (2) 导入检测指示物
- 25 当初始细胞缺少适宜的检测指示物,但待测物作用位点
- 26 表达适量并存在特异性激活的转录因子时,可将相应的 DNA
- 27 反应元件与报告基因序列结合并导入初始细胞,建立反应性
- 28 报告基因细胞系。通常选择导入的报告基因可表达易被检测
- 29 的蛋白质或酶,如绿色荧光蛋白、荧光素酶等,作为检测指
- 30 示物来反映待测物的活性。如,将干扰素刺激反应元件(ISRE)
- 31 荧光素酶报告基因导入 HEK293 细胞,通过检测荧光素酶表
- 32 达量,测定 I 型干扰素生物学活性。
- 33 (3)增强细胞反应性同时导入检测指示物
- 34 当初始细胞缺少适宜的检测指示物,且对待测物反应不
- 35 敏感,但存在特异性激活的转录因子时,可同时将作用位点
- 36 和相应的 DNA 反应元件报告基因导入初始细胞,建立反应性
- 37 报告基因细胞系。如,将胰高血糖素样肽 1 (GLP1) 受体和
- 38 cAMP 反应元件 (CRE) 荧光素酶报告基因同时导入 CHO-K1
- 39 细胞,通过检测荧光素酶表达量来测定 GLP1 及其类似物的
- 40 生物学活性。
- 41 当单一细胞无法满足检测需求,也可采用双细胞报告基
- 42 因系统,例如抗体依赖的细胞介导的细胞毒作用(ADCC)
- 43 活性检测。此外,也可根据待测物的作用特性,选用双报告
- 44 基因、生物传感器、互补荧光素酶、基因编辑等其他构建策

- 45 略。
- 46 2.初始细胞的选择
- 47 初始细胞的选择通常基于待测物的作用机制,综合考虑
- 48 细胞来源、遗传特性、培养特性及待测物作用位点/临床相关
- 49 性等因素,优先选择遗传背景清晰,容易进行遗传改造;易
- 50 培养(生长速度、营养需求等),可获得足够的检测所需细胞
- 51 量; 传代稳定, 能保持遗传和功能稳定; 待测物作用位点表
- 52 达量高,且具有临床相关性的初始细胞。初始细胞的来源控
- 53 制可参照"生物制品生产检定用动物细胞基质制备及质量控
- 54 制"的相关要求。
- 55 3.载体/转染方式的选择
- 56 应确定目的基因和载体的来源、核酸序列和功能特性等。
- 57 常用的病毒载体主要有逆转录病毒、慢病毒和腺病毒等; 非
- 58 病毒载体通常采用磷酸钙共沉淀法、转染试剂法(脂质体和
- 59 阳离子聚合物等)、电穿孔法、显微注射法等方式将目的基因
- 60 导入细胞。可根据需求选择合适的载体(商品化或自行构建)
- 61 /转染方式。载体上应包含适宜的筛选标记,如潮霉素、新霉
- 62 素、嘌呤霉素等抗性蛋白的编码基因,以筛选稳定的基因修
- 63 饰细胞。
- 64 4.反应性检测
- 65 初始细胞中导入目的基因后(瞬时表达),应采用适宜方
- 66 法检测拟修饰基因的表达情况,并经过初步实验条件探索(包

- 67 括待测物的浓度范围、作用时间、分析培养基的成分及含量
- 68 等)检测细胞的反应性,为保证结果真实可靠,应设置合理
- 69 的空白对照、阴性对照、阳性对照等。如瞬时表达效率低,
- 70 可通过加压筛选等方法提高目的基因阳性的细胞比例后再进
- 71 行反应性检测。
- 72 (二)细胞的筛选
- 73 将携带目的基因的载体导入初始细胞后,在适宜的筛选
- 74 体系中连续培养以获得稳定的多克隆细胞。采用有限稀释或
- 75 流式分选等方法对多克隆细胞进行克隆化分离培养,并根据
- 76 细胞对待测物的剂量效应曲线,综合比较灵敏度、反应性(如
- 77 信噪比)、稳定性(如修饰基因、细胞基因组及表型的稳定性)
- 78 等因素, 筛选最佳细胞克隆, 作为细胞种子用于细胞库建立。
- 79 检定用基因修饰细胞系的名称应包括初始细胞、修饰基因等
- 80 信息。
- 81 (三)细胞库的建立
- 82 细胞库的建立、管理和质量控制可参照"生物制品生产检
- 83 定用动物细胞基质制备及质量控制"中检定用细胞的相关内
- 84 容。如必要,在生长培养基中加入维持剂量的筛选试剂以防
- 85 止外源基因丢失,保证基因修饰细胞的稳定性。应建立细胞
- 86 库的质量控制,检测项目及方法可依据细胞的特性而定,如,
- 87 可采用 PCR 的方法检测外源基因的拷贝数,采用免疫印迹、
- 88 流式免疫荧光等方法检测目的蛋白的表达情况等。应根据基

- 89 因修饰细胞的特性及传代稳定性,确定其允许使用的最高限
- 90 定代次,以及该细胞用于检测最适宜的使用代次范围。

91 二、方法开发

- 92 基于基因修饰细胞系的生物检定法主要用于生物学活性、
- 93 效价测定,也可用于某些杂质的含量测定。应根据检测目的
- 94 进行合理的实验设计和方法验证,以确保所建方法的专属性、
- 95 灵敏度和准确性。
- 96 (一) 定量检测方法设计
- 97 基于基因修饰细胞系的生物检定法如用于定量检测,通
- 98 常可基于方法特性,通过比较供试品和标准品所产生的细胞
- 99 效应,对供试品中的活性成分进行定量测定。
- 100 1.方法建立
- 101 基于基因修饰细胞系的生物检定法与常规细胞法类似,
- 102 应根据供试品中待测物的作用机制,选择特异性好、易检测
- 103 的指示物及相应的检测方法,一般可采用直接法或竞争抑制
- 104 法进行测定。以最常用的报告基因法为例,直接法是待测物
- 105 直接作用细胞后,经过一系列信号传导和级联反应,激活
- 106 DNA 反应元件,启动报告基因表达,通过检测报告基因表达
- 107 量的变化来测定供试品的生物学活性,多用于细胞因子类药
- 108 物; 竞争抑制法是采用特定诱导物刺激细胞, 激活报告基因
- 109 表达,再加入待测物竞争性抑制报告基因的表达,多用于单
- 110 抗类药物。

111 方法建立通常包括以下步骤:细胞制备、供试品和标准 112 品的制备、加样并孵育、目标指示物的检测。

113 (1) 细胞制备

118

129

114 检测用细胞的制备通常在细胞板上进行,可根据细胞和 115 待测物的作用特性,选择在细胞板孔中先接种细胞后加待测 116 物或两者同时进行。某些情况下为降低本底效应需对细胞进 117 行饥饿处理,此外,还应通过合理布局尽可能减少位置效应。

(2) 供试品和标准品的制备

119 供试品和标准品的制备应保证其稀释的浓度范围满足量 120 效反应曲线要求。可预先采用标准品或典型供试品找出其全 121 反应域,然后调整所用剂量使之符合浓度分布点的最低要求。 122 可采用系列稀释或独立稀释两种方式,每个浓度点至少设置 123 两个复孔。

124 (3) 加样并孵育

125 将制备好的供试品、标准品加入细胞板,在适宜条件下 126 孵育,使待测物与细胞充分作用。对于竞争抑制法,可根据 127 具体情况提前或同时加入特定诱导物,某些情况下还需将诱 128 导物与待测物孵育一段时间使其充分结合后再加入细胞板。

(4)目标指示物的检测

130 除少部分可直接检测的目标指示物(如荧光蛋白)外, 131 间接检测的目标指示物,通常需在细胞板中加入特定的染料 132 或底物,必要时可同时加入裂解液,经充分反应后,进行信

- 133 号采集,如光密度(OD)、化学发光或荧光信号。某些情况
- 134 下,还需要采用酶联免疫吸附(ELISA)、PCR等更加复杂的
- 135 方式检测目标指示物。
- 136 2.方法优化
- 137 建立标准化的测定法,达到最佳的准确度、精密度、线
- 138 性以及范围等要求。实验参数的确定可以采取两种策略:单
- 139 因素轮换实验设计和多因素实验设计。前者是对每个实验参
- 140 数进行独立优化;后者同时对多个实验参数进行优化,更加
- 141 快速有效,首先通过流程分析、风险评估及初步实验筛选出
- 142 关键实验参数,再采用合理的试验设计探索最佳实验参数组
- 143 合及各实验参数可接受的波动范围。
- 144 (二)方法学验证
- 145 优化后的方法应进行方法学验证,具体原则可参照《生
- 146 物制品生物活性/效价测定方法验证指导原则》、《分析方法验
- 147 证指导原则》相关要求等。
- 148 三、数据分析
- 149 数据分析贯穿方法开发、验证和应用的全过程,应符合
- 150 《生物检定统计法》相关要求。
- 151 (一)数据要求
- 152 数据应具有独立性、正态性和方差齐性。如达不到要求,
- 153 可进行适当的数据转换(对数转换、平方根转换等)。
- 154 (二)数学模型

- 155 在所用剂量范围内,采用合适的数学模型对量效关系进 156 行线性拟合,如对数剂量与反应(或反应的函数)呈直线关 157 系,统计模型为线性模型;如呈 S 形曲线关系,常用的统计 158 模型为四参数模型。
- 159 (三)适用性测试
- 160 1.系统适用性
- 161 常用的两个指标是模型的拟合优度和数据的精密度。前 162 者通常采用模型的决定系数 (R²)、失拟 F 检验等进行评价; 163 后者用标准品模型拟合的均方误差,或标准品和供试品模型
- 164 拟合的总均方误差进行评价。一般使用历史数据和灵敏度分
- 165 析来设定可接受的阈值。
- 166 2.供试品和标准品适用性
- 生物检定的模型要求供试品和标准品中的活性成分必须 168 性质相同才能计算其相对效价,即两者需具有相似性,一般 169 通过量效曲线的平行性来评价,可采用差异性检验(如 F检 170 验、卡方检验)或等效性检验(如双单侧 t 检验法)。
- 171 (四)结果计算
- 172 根据数学模型采用合适的计算方式,通过比较供试品与 173 标准品的量效关系计算供试品中待测物的生物学活性、效价 174 或其它量值。

175

起草单位: 中国食品药品检定研究院

联系方式: 010-67095426